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Hydrodynamic stability of free boundary-layer flows is treated in general. It is 
found that the situations at low Reynolds numbers are universal for all velocity 
profiles of free boundary-layer type. Curves of constant amplification are calcu- 
lated as far as O(R3). In  particular, the asymptotic form of the neutral curves for 
R = 0 is found to be a = R/(4  J3) ,  so that the critical Reynolds numbers of these 
flows are identically zero. The phase velocity of the disturbance is also found to be 
zero, for all disturbances, up to the second approximation. 

A method of normalizing the velocity profiles is suggested, and existing results 
for the stability of various profiles at  large Reynolds numbers are discussed from 
a new point of view. 

1. Introduction 
It has recently become recognized that the problem of hydrodynamic stability 

for unbounded laminar flows is considerably different from that for bounded 
flows. For instance, it has been found that a plane laminar jet in an infinite fluid 
is highly unstable, and its critical Reynolds number is about 4 (Tatsumi & 
Kakutani 1958; Howard 1959) in contrast with the value 420 for the boundary 
layer along a flat plate and 6000 for plane Poiseuille flow. The mathematical 
behaviour of the eigen-solutions in the neighbourhood of the critical Reynolds 
number is also quite different for unbounded and bounded flows. In  the latter, 
the solutions are sensitive to the second spatial derivative of the velocity profile, 
while in the former they may be expressed in terms of definite integrals of the 
profile, and so are largely independent of its detailed structure. 

This difference seems to be particularly marked in the case of free boundary- 
layer flows between twouniform streams, since, according to Esch (1957), a simple 
piecewise linear profile of free boundary-layer type has zero critical Reynolds 
number, which means that the flow is always unstable. The stability of a realistic 
velocity profile of free boundary-layer type was first investigated by Lessen 
(1950). However, since he employed a method of analysis which is effective only 
for large Reynolds numbers, no result was given for the critical Reynolds number, 
which was supposed to be very low. Even in the region of large Reynolds number 
which was covered by the analyses of both Lessen and Esch, the behaviour of the 
respective curves of neutral stability is not identical. According to Lessen’s 
result, the range of the wave-number a corresponding to instability decreases 
monotonically with decreasing Reynolds number R .  On the other hand, Esch’s 
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neutral curve of a(R) shows a curious kink at about R = 10 giving there a 
widest wave-number range of instability. This result clearly contradicts the 
general belief regarding the stability of unbounded flows that viscosity always 
acts on the disturbance as a stabilizing factor. 

In  order to clarify these points, we attempt in this paper to discuss the stability 
of free boundary-layer flows in general, that is, assuming no particular form of the 
velocity profile. The mathematical method employed here is the same as that 
developed by Tatsumi & Kakutani for treating a plane laminar jet at low 
Reynolds numbers (Tatsumi & Kakutani 1958; this paper will be referred to 
hereafter as I). 

The asymptotic behaviour of the neutral curve and the distribution of the 
amplification factor in the (a, R)-plane are obtained for small values of 01 and R, 
and they are found to be universal for all flows of this type, if the profiles are 
normalized with respect to some appropriate characteristic length. Among the 
universal properties of free boundary-layer flows at  small Reynolds numbers, the 
following two may be noted : (i) the critical Reynolds numbers of these flows are 
zero, and (ii) the phase velocities of all disturbances are identically zero. 

If the velocity profiles are normalized so as to make their stability properties at 
low Reynolds numbers universal, they generally show different behaviour for 
larger Reynolds numbers. The above-mentioned difference between the high-R 
branches of Lessen's and Esch's neutral curves is therefore easily accountable 
from this point of view. It may be concluded in general that we cannot use B 

rough approximation to a velocity profile for investigating its stability at  larger 
Reynolds numbers. 

2. Formulation of the problem 
Let U(y) be the velocity profile of a steady plane parallel flow, taking the 

z-axis of Cartesian co-ordinates along the direction of the flow. In  stability 
problems of plane flow, Squire's theorem (1933) guarantees that we need only 
consider two-dimensional disturbances, provided they are smaller in order of 
magnitude than the velocity of the undisturbed flow. 

Two-dimensional disturbance velocities (u, v )  may be expressed in terms of the 
stream function @(x, y, t )  as 

u = -  a@ v u - -  a@ 
a Y  ' ax - 

In  particular, we consider here a harmonic component 

@ = $(y) exp &(z - ct)}, (2.2) 

where a ( > 0) represents the wave-number in the s-direction, a ( c )  = c, the phase 
velocity, and 01Y(c) = aci the amplification factor of the disturbance. According 
as c( takes positive, zero or negative values, we have an amplified, neutral or 
damped disturbance respectively. 

Substituting (2.1) and (2.2) into the equations of motion and neglecting the 
non-linear terms with respect to $, we obtain the Orr-Sommerfeld equation 

$ 1 ~  - 201~4" + a4$ = iaR{( U - c )  (4" - 094) - U$>, (2.3) 
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where dmhes denote the differentiation with respect to y, and all quantities are 
made non-dimensional using the characteristic velocity U,, scale 1, and Reynolds 
number R = U,Z/v. In the following, U, is so chosen as to make 

U(0O) = 1, U(  -00 )  = - 1, (2.4) 

and 1 will be specified later. 

y < 0, and define V,(y) ( j  = I, 11) by 
Now we divide the whole space into two regions (I) where y > 0, and (11) where 

(2.5) 1 UI(Y) = W Y )  - U(0O) = U(Y) - 1 7  

UII(Y) = U(Y)- W - w )  = U(Y)+I. 

Then equation (2.3) may be written, for the regions I and 11, as 

(D2-a2) (02--p3)$ = iaR(q(D2-ol2)- U;}$ ,  (2.6) 
where 

D E dldy,  /3; = a2-iiaR(c- l),  = a2-iaR(c+ I), 9 ( / ? j )  > 0. 

In the region (I), UI and U; on the right-hand side of equation (2.6) decrease 
with increasing y, and in the region (11) the same is true for U,, and U &  with 
increasing - y. Thus, the premises for expanding the solution $ in power series 
of aR, which was explored in 3 5 of I, are satisfied in each region separately, and we 
can express $j in the form 

where the 9bi7s are the solutions of the following equations: 

(D2-012)(D2-p;)$b$? = 0, 

(02-a2) ( P - p ; ) $ ; n )  = (U,(D2- a ) -  u;>$bp-lf (n 2 1). 

The uniform convergence of the series (2.7) can be easily verified, by extending 
the proof given in 5 5 of I, for those velocity profiles in which U, and UII tend to 
zero as, or more rapidly than, ermv for y -+ k 00 respectively, and provided that 
a c m, 9(p,) < m. The above conditions for U(y) are usually satisfied if the 
boundary-layer approximation is valid for the basic flow. For, in that case, the 
stream function, denoted by f, must satisfy 

and asymptotically 
2f’” +fs” = 0, 

1 
U(y) = f’(y) cc - e-mu2 + const., 

Y 
or eFmY + const., 

according asf’( k 00) [ = U( fr co)] $: 0 orf’( & 00) [ = U( 5 a)] = 0 respectively. 

must vanish at y = 5 00, that is, 
The boundary condition for the disturbance is that the component velocities 

$’( koo) = &q5( 5co) = 0. (2.9) 
28-2 
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3. Equation for eigenvalues 

must always be rejected by the condition (2.9). Thus we have the solutions 
Equations (2.8) permit four independent solutions for each $,, but two of them 

(3.1) 1 $1 = C,$,l+ Q2$12 for Y > 0, 

$11 = ~ 3 $ 1 1 1 + ~ 4 $ 1 1 2  for Y < 0, 

where the C's are numerical constants, and QIjk ( j  = I, 11; k = 1,2)  are given by 

(3.4) 
( j  = I,II, k = 1,2, n 2 I),  

where 5 co in the integrals must be taken as + co and - 00 for j = I and I1 
respectively . 

In  order to obtain the complete solution $ of (2.3) throughout -a < y < co, 
we have to connect $I and $11 analytically at  y = 0. This is done by putting 

equality of all other higher derivatives being then automatically satisfied through 
these conditions and equation (2.3). Substituting (3.1) into ( 3 4 ,  we have the 
following condition for all C's not to vanish: 

$1 l(0) $1 z(0) $11 l(0) $11 2(0) 

$;lW $&O) $;Im $;I2(0) 

$;do) $;2(0) $;;l(O) $;Im 
$;",(O, $:do) $YIl(O) $;112(0) 

= 0. (3.6) E r  

This equation gives a relationship between eigenvalues of a, R and c. For real 
values of c it defines a as a function of R, which may be shown graphically in the 
(a, R)-plane as the neutral curve. 

4. Eigenvalue problem for small cc. and R 

powers of iaR as follows: 
Equation (3.6), with (3.2), (3.3) and (3.4) substituted, can be expanded into 

m w ~ a z  

E zz C C C ( ~ c c R ) " + ~ + ~ + * E ~ ~ ~ ~  = 0, (4.1) 
m = 0  n=Op=O q=o 



1%) = - IOim q ( y )  (cosh (ay) D + a sinh (ay)} $%-')(y) dy, 
/3; - a2 

In  principle we can calculate a(R, c )  for any value of R by solving equation (4. l), 
so far as the conditions a < m, L%'{Pj} < m (j = 1,II)  are satisfied. In  practice 
however, the computation becomes laborious for large R, for then we have to take 
more and more terms in order to obtain accurate solutions. Here we shall 
restrict ourselves to the study of equation (4.1) in the region of small a and R. 
Then, expanding Em,,, again into powers of a and Pj, and retaining only first few 
terms, we obtain the following equation for eigenvalues: 
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The first factor of the right-hand side of (4.5) comes from arbitrariness in the 
choice of the origin of y, and does not affect the eigenvalue problem. In fact, 
if we choose y = 0 so as to make V, = qI, this factor becomes unity. The second 
factor, put equal to zero, gives only a trivial solution: R = 0 and 01 = 0. Thus 
the true eigenvalue equation must be 

F = 0, (4.7) 

in which it is confirmed, as a matter of course, that the factor 

cw, - w,, + &(4 - v,,)21 
is independent of the choice of the origin of y. 

FIUURE 1. Distribution of oi for small a and R. 

As the first approximation, we take the equation 

P; +@I - P I P 1 1  + N P I f  P I I )  + a2 = 0, (4.8) 

the solution of which is given, under the conditions a > 0, aR > 0, 9@,} > o 

c, = 0. 

From (4.9) we obtain the distribution of the amplification factor c, over the 
(a, R)-plane as shown in figure 1. Putting ci = 0 in (4.9), we have the asymptotic 

(4.10) 
neutral curve for small R 

a=--- 

which agrees with the result obtained by Each (1957) for a piecewise linear profile. 
It should be noted that the results (4.9) and (4.10) apply universally to all velocity 
profiles of the free boundary-layer type, that is, those profiles in which U(c0) and 
U( - co) have a finite difference. 

R 
4 4 3 ’  
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The second-approximate solution of (4.7) may be obtained by perturbation of 
the first approximation as 

c, = 0. 

Thus, for the neutral curve, 
I 

(4.12) 

5. Discussion 
It may be seen from (4.11) that the velocity profile U(y)  enters the problem 

only through the factor W, - WII. As we have left the characteristic length I un- 
specified, we have now the liberty of choosing 1 so as to make 

w,,-wl = 1. (5.1) 

0.1 1 10 100 loo0 

R 

FIQURE 2. Curve of constant ci. Numbers attached to the curves denote values of ci. 

With this choice of the characteristic length, the asymptotic behaviour of the 
curves of constant ci becomes universal up to O(R3). These curves (including the 
neutral curve) calculated from (4.11) and (4.12) are shown in figure 2. 

Figure 2 also shows the results obtained by Lessen (1950) and Each (1957) for 
the asymptotic branch of the neutral curve at higher Reynolds numbers, their 
velocity profiles being normalized as to satisfy the condition (5.1). As is clearly 
seen from figure 2, the solutions cease to be universal for Reynolds numbers which 
are not small, and the neutral curves have different limiting values of wave- 
number, a, say, for infinite Reynolds number. It is of course possible to choose 
1 so as to make the high Reynolds number branches of any two neutral curves 
coincide, but then the situation at small Reynolds numbers is no longer unique. 
Since the condition (5.1) gives an absolute rule for determining 1 which is valid not 
only for a given pair of profiles but also for all possible profiles of free boundary- 
layer type, it seems most meaningful to adopt this condition for normalizing the 
velocity profiles. 
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As the neutral curves of Lessen's and Esch's profiles show a common feature 
that a does not change appreciably with R for larger values of R, the same trend 
may be expected to hold for other profiles, and high Reynolds number branches 
of their neutral curves may be well approximated by a = const. = as. Thus it may 
be concluded that if we want to investigate the stability problem of a free 
boundary-layer flow using some approximate velocity profile, the profile must 
be such that it gives a, close to that of the exact profile. The limiting wave- 
number as has been calculated for a number of typical velocity profiles, and its 
numerical values are tabulated in table 1 and marked in figure 2. It may be seen 
from table 1 that the profile U(y) = tanh Icy gives the closest approximation to 
Lessen's profile which was obtained by solving the boundary-layer equation 
numerically. 

Antisymmetric profile a s  

0.37 
0 < ky < 1, U = ky; 
1 < ky, U = 1; k = 1/43 
0 < 2ky < 1, U = ky; 
1 < 2ky < 3, U = (2ky+1)/4; 
3 < Zky, U = 1; k = 4714 
U = 2erfky-1,  k = 1/42 

A 

0.58 

0.71 
0.91 U = tanh ky, k = n/243 

B 

C 
D 

Asymmetric profile 
E Numerical solution (Lessen) 

TABLE 1 

0.90 

Equation (4.11) also shows that the relation c, = 0 holds up t o  the second 
approximation. In a general co-ordinate system which is free from the condition 
(2.4), this relation may be expressed as 

c, = *(U(Co) + U( -a)}. ( 5 4  

It is unlikely, however, that (5.2) is universally valid for all Reynolds numbers 
and profiles, and if not it must fail to  be satisfied at some higher stage of approxi- 
mation. If the velocity profile is antisymmetric with respect to y, c, = 0 follows 
from the uniqueness of q5 for given a and R. Since U( -y) = - U(y) for this 
profile, we have, replacing y by -y in the Orr-Sommerfeld equation (2.3), 

q P (  - y) - 2a24"( - y) + a"( - y) 

= -iaR[(U+c)($"( -~) -a '$(  -y)}- UN$( -9)]. (5.3) 

If we put x(y) = $( -y), the equation for x(y) is written, taking the complex 
conjugate of (5.3), as 

(5-4) X'V - 2z2x" + a4x = iaR(( U + C) (2" - a'x) - U"X). 

Equation (5.4) for x(y) is identical with equation (2.3) for #(y), arid therefore if 
the latter has a unique solution for given a and R, the eigen-solutions x and $ 
must be equal, and so are the eigenvalues c and - C, thus giving that c,. = 0. But 
so far nothing is known about the uniqueness of this eigenvalue problem. 
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One of the essential weaknesses in applying the usual procedure of hydro- 
dynamic stability theory to low Reynolds number flows seems to lie in its funda- 
mental assumption that the undisturbed flow is, at least approximately, parallel. 
This assumption is generally satisfied when Reynolds number of the flow is 
sufficiently large, but it becomes difficult at  small Reynolds numbers to maintain 
parallel flows unless some body force is applied from outside. Therefore, without 
such external forces, the results obtained by treating the flows as essentially 
parallel become unrealistic for small Reynolds numbers, and they should only be 
accepted with these reservations in mind. 
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